r - Combine 2 plots (ggplot) into one plot and differenciate them -
i have problem similar following example. want differentiate lines different group; example, want distinguish "m" sexe cdf group 1 , "m" sexe cdf group 2.
library(ggplot2) sexe <- rep(c("m", "w", "x"), 50) weight1 <- runif(150, 30, 90) weight2 <- runif(150, 30, 90) visual1 = data.frame(sexe = sexe, weight = weight1) visual2 = data.frame(sexe = sexe, weight = weight2) visual1$group <- 1 visual2$group <- 2 visual12 <- rbind(visual1, visual2) p <- ggplot(dat = visual12, aes(x = as.numeric(weight), group = interaction(group, sexe), col = sexe)) + # geom_point(dat = dat2, aes(x = as.numeric(dura), col = type_de_terminal)) + stat_ecdf(geom = "step") + # scale_colour_discrete(guide = guide_legend(override.aes = list(alpha = 1))) + scale_colour_brewer(name = "sexe", palette = "set1") + theme(axis.text = element_text(size = 15), legend.justification = c(1, 0), legend.position = c(1, 0), axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + ylab("cdf") + xlab("...") + theme_bw() + # scale_y_continuous(limits=c(0,1), labels= percent) + ggtitle("cumulative distribution function of ...") # scale_x_log10(limits = c(1,1e3), breaks = c(10 , 100)) p
what if change linetype
group?
p <- ggplot(dat = visual12, aes(x = as.numeric(weight), group = interaction(group, sexe), linetype=factor(group), col = sexe)) + stat_ecdf(geom = "step") + scale_colour_brewer(name = "sexe", palette = "set1") + theme(axis.text = element_text(size = 15), legend.justification = c(1, 0), legend.position = c(1, 0), axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + ylab("cdf") + xlab("...") + theme_bw() + ggtitle("cumulative distribution function of ...") p
Comments
Post a Comment